

Directing groups

Links to prior learning

6.1

Sigma and pi bonds

Reactions of alkenes

Bond enthalpies

Electron donating groups

6.2

Reactivity of benzene

Reactions of phenol

Learning Purpose **MUST (C)**

Recall the directing and withdrawing groups

SHOULD (B/A)

Predict the products of a reaction, taking into account the directing groups

COULD

Predict a multistep synthesis to make a desired product relating to directing and withdrawing groups

Links to future learning Organic synthesis

KEY WORDS

Arene

Benzene

Delocalised

Electron density

Electrophile

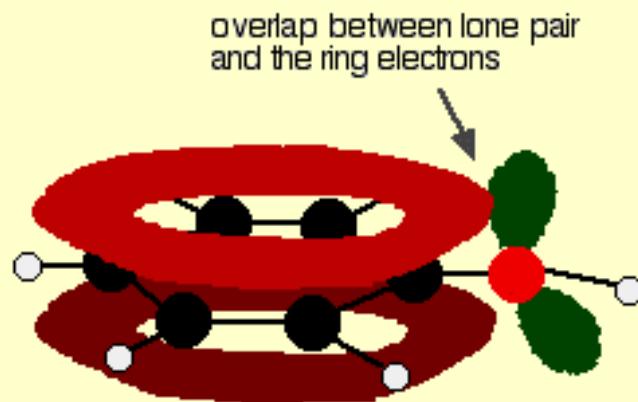
Electrophilic addition

Phenol

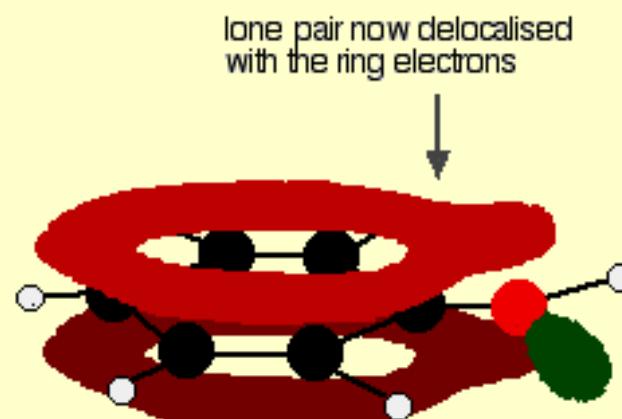
Directing group

Electron donating

Electron withdrawing

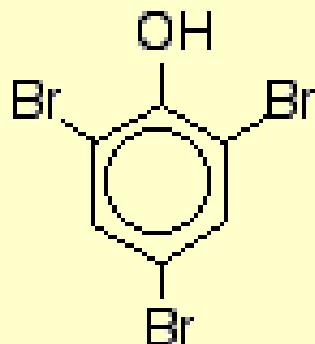

Lone pair

Explaining why phenol is more reactive than benzene

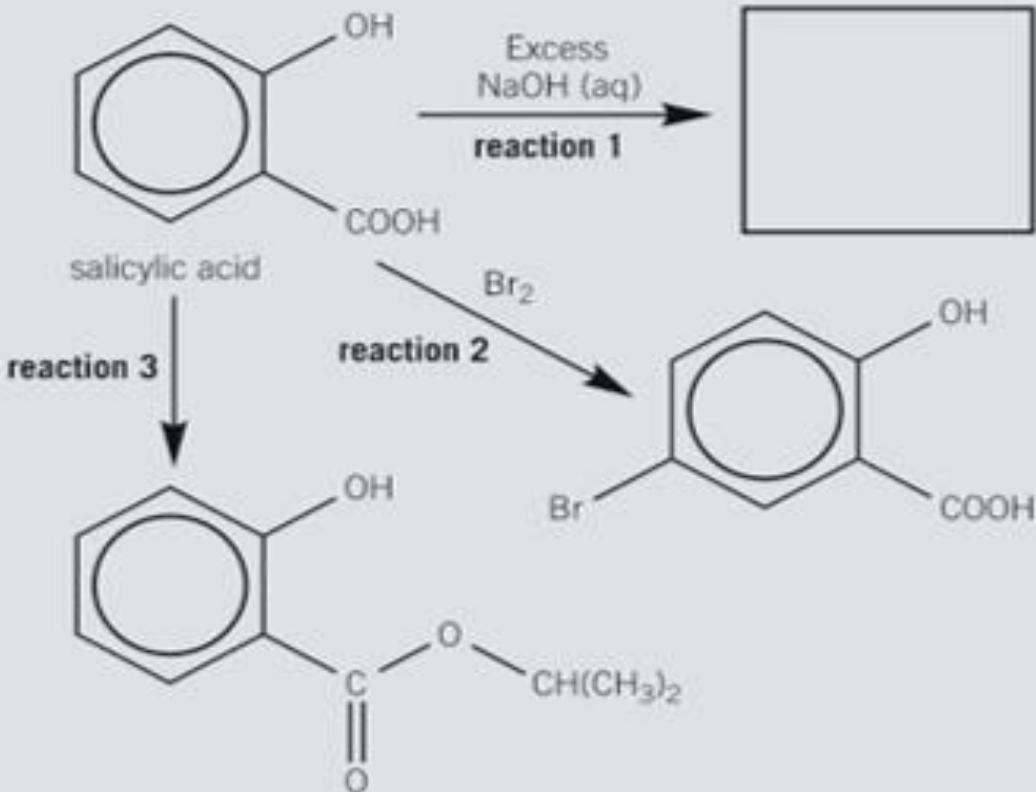

Bromine reacts much more readily with phenol than benzene. The increased reactivity occurs because:

- A lone pair of electrons (occupying a p orbital) on the oxygen is delocalised into the ring
- This increases the electron density
- Phenol can polarises bromine molecules and generate the electrophile on its own without the need of a catalyst

One of the lone pairs on the oxygen atom in the -OH group overlaps with the delocalised ring electron system . . .



. . . giving a structure rather like this:


The donation of the oxygen's lone pair into the ring system increases the electron density around the ring.

- The -OH group has more activating effect on some positions around the ring than others .
- That means that incoming groups will go into some positions much faster than they will into others.
- The net effect of this is that the -OH group has a **2,4-*directing effect***. That means that incoming groups will tend to go into the 2- position (next door to the -OH group) or the 4- position (opposite the -OH group). You will get hardly any of the 3- isomer formed - it is produced too slowly

Mini plenary

(i) In the box below, draw the structure of the organic compound formed by **reaction 1**. (1 mark)

(ii) Write a chemical equation to represent **reaction 2**. (1 mark)

(iii) State the reagents and conditions in **reaction 3**. (1 mark)

b Bromine reacts more readily with salicylic acid than with benzene.

(i) Outline the mechanism for the bromination of salicylic acid shown in **reaction 2** in the flowchart. A halogen carrier is not required for this reaction. The electrophile is Br₂. (4 marks)

(ii) Explain why bromine reacts more readily with salicylic acid than with benzene.

In your answer, you should use appropriate technical terms, spelled correctly. (3 marks)

7 When monosubstituted aromatic compounds undergo further substitution, the position at which the new substituent attaches to the ring is directed by the original substituent. Use the table below to answer the questions which follow:

Original substituent	Position to which new substituent is directed
$-\text{COOH}$	3
$-\text{CH}_3$ (or any alkyl group)	2, 4
$-\text{NO}_2$	3
$-\text{Cl}$	2, 4
$-\text{COCH}_3$	3

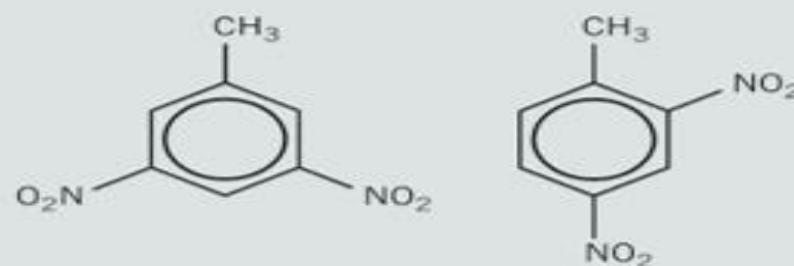
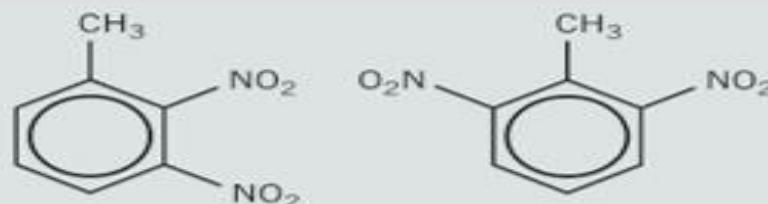
a (i) Draw the structure of the major monosubstituted product formed when phenylethanone, $\text{C}_6\text{H}_5\text{COCH}_3$, reacts with chlorine in the presence of AlCl_3 . (1 mark)

(ii) Show the mechanism for this reaction using curly arrows and illustrating the role of AlCl_3 in the reaction. (6 marks)

b Identify the two monosubstituted isomers formed when methylbenzene reacts with chloroethane in the presence of AlCl_3 (2 marks)

8 Phenol is much more susceptible to electrophilic attack than benzene.

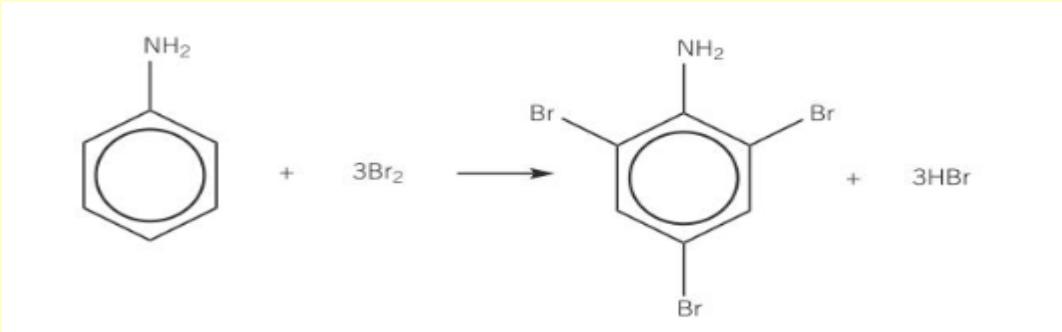
- a** Explain why phenol reacts more readily with benzene with electrophiles. (3 marks)
- b** Phenol reacts with dilute nitric acid to form a mixture of two monosubstituted isomers.



Draw the structures of these two isomers and write an equation for the formation of one of these isomers. (3 marks)

9 Methylbenzene, $C_6H_5CH_3$, is an aromatic hydrocarbon, used widely as a solvent. It is readily nitrated and can form mono-, di-, or tri-nitromethylbenzenes.

- a** 4-Nitromethylbenzene can be formed by the nitration of methylbenzene.

Outline the mechanism for the formation of 4-nitromethylbenzene from methylbenzene using NO_2^+ as the electrophile. (4 marks)


- b** There are six possible structural isomers of $CH_3C_6H_3(NO_2)_2$ that are dinitromethylbenzenes. Four of the isomers are shown below.

Draw the structures of the other two isomers. (2 marks)

Directing groups and further substitution

- The reactivity of benzene is affected by substituted groups
- We say that the substituted groups have **directing** and **withdrawing** effects
- For example bromine will react rapidly with phenyl amine without the need for a halogen carrier catalyst. The substituted amine group has activated the benzene ring

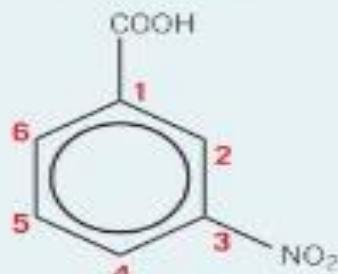
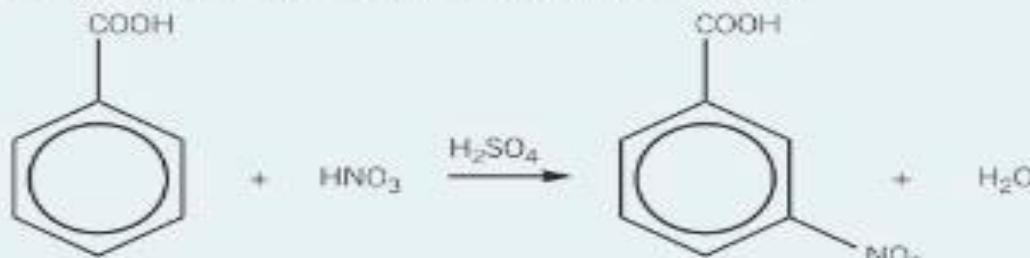
- Substituted groups can increase and decrease the reactivity of benzene and also effect the positions substitutions will take place

Directing effects

You need to remember the 2,4 directing effects of electron donating groups OH and NH₂ and the 3 directing effect of electron withdrawing groups NO₂. Any other examples will be provided in the exam question

2-and 4-directing (<i>ortho</i> -and- <i>para</i> directing)	3-directing (<i>meta</i> directing)
-NH ₂ or -NHR	RCOR
-OH	-COOR
-OR	-SO ₃ H
-R or -C ₆ H ₅	-CHO
-F, -Cl, -Br, -I	-COOH
	-CN
	-NO ₂
	-NR ₃ ⁺

Worked example

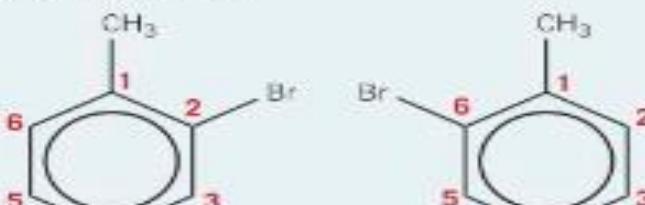
Worked example: Predicting substitution products I

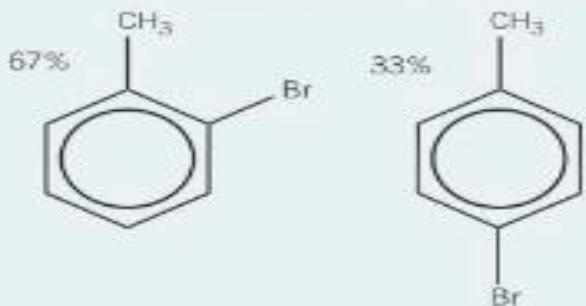
Benzoic acid, C_6H_5COOH , can be nitrated using a mixture of nitric acid, HNO_3 , and sulfuric acid, H_2SO_4 . Identify the mono-substituted organic product(s) of benzoic acid and write an equation for the reaction.

Step 1: As the $-COOH$ group is a 3-directing group there is only one organic product and the NO_2 group will substitute to the 3-carbon position:

Step 2: Write the equation for the reaction.

2-and 4-directing (<i>ortho</i> -and- <i>para</i> directing)	3-directing (<i>meta</i> directing)
$-NH_2$ or $-NHR$	$RCOR$
$-OH$	$-COOR$
$-OR$	$-SO_3H$
$-R$ or $-C_6H_5$	$-CHO$
$-F$, $-Cl$, $-Br$, $-I$	$-COOH$
	$-CN$
	$-NO_2$
	$-NR_3^+$


Worked example


Worked example: Predicting substitution products II

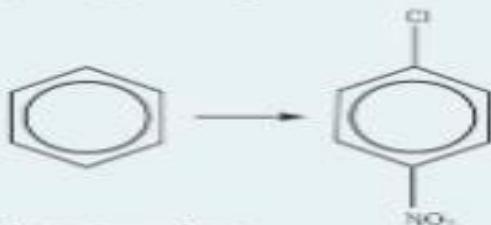
Methylbenzene reacts more readily than benzene with bromine, forming approximately 67% of one mono-substituted product of methylbenzene and 33% of a second mono-substituted product. Draw the structures of both organic products and suggest which product is formed in the greatest percentage.

Step 1: As the $-\text{CH}_3$ group is a 2- and 4-directing group, substitution of the bromine group can be at the 2-, 4-, or 6-positions.

Step 2: Positions 2 and 6 are equivalent so you would expect approximately twice as much 2-bromomethylbenzene as 4-bromomethylbenzene.

2-and 4-directing (ortho-and-para directing)

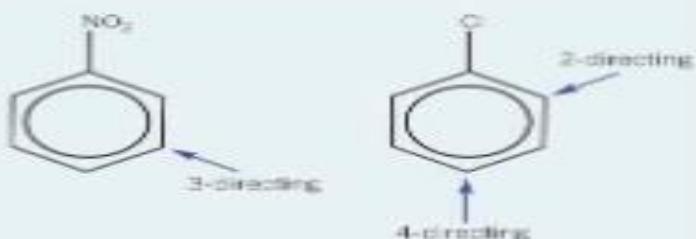
3-directing (meta directing)


$-\text{NH}_2$ or $-\text{NHR}$	RCOR
$-\text{OH}$	$-\text{COOR}$
$-\text{OR}$	$-\text{SO}_3\text{H}$
$-\text{R}$ or $-\text{C}_6\text{H}_5$	$-\text{CHO}$
$-\text{F}, -\text{Cl}, -\text{Br}, -\text{I}$	$-\text{COOH}$
	$-\text{CN}$
	$-\text{NO}_2$
	$-\text{NR}_3^+$

Worked example

Worked example: Planning an organic synthesis

Suggest a series of reactions that could be used to carry out the following synthesis. You should be able to carry out the reaction in two steps.


Step 1: Identify the type of disubstitution.

The required product is a 1,4-disubstituted product.

Therefore the first substituent added must direct to the 4 position.

Step 2: Identify the directing effect of the two substituents.

- NO₂ directs the second substituent to carbon 3.
- Cl directs the second substituent to carbons 2 and 4.

Therefore Cl must be substituted first to give the correct direction for the second NO₂ substituent.

Step 3: Write out the two steps with the reagents needed for the synthesis.

Step 4: Is there a mixture of organic products to separate?

As Cl directs to positions 2 and 4, a mixture of the required 4-substituted product and the 2-substituted product would be obtained. These could be separated by distillation if they are liquids, or other methods including recrystallisation, if they are solids.

2-and 4-directing (ortho-and-para directing)	3-directing (meta directing)
-NH ₂ or -NHR	RCOR
-OH	-COOR
-OR	-SO ₃ H
-R or -C ₆ H ₅	-CHO
-F, -Cl, -Br, -I	-COOH
	-CN
	-NO ₂
	-NR ₃ ⁺

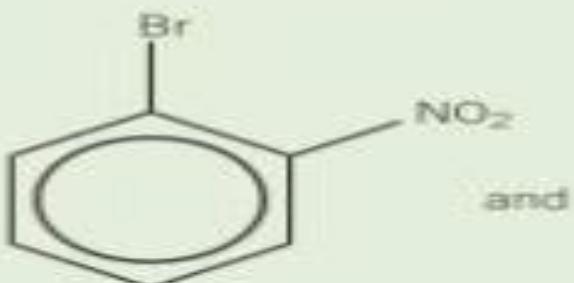
Mini plenary

1 Identify each of the following compounds as containing 2-, 4-, or 3-directing groups.

a $C_6H_5CH_2CH_3$ (1 mark)
b C_6H_5Cl (1 mark)
c C_6H_5COOH (1 mark)
d $C_6H_5N^+(CH_3)_3$ (1 mark)

2 Identify and draw the structures of the product(s) of the following reactions.

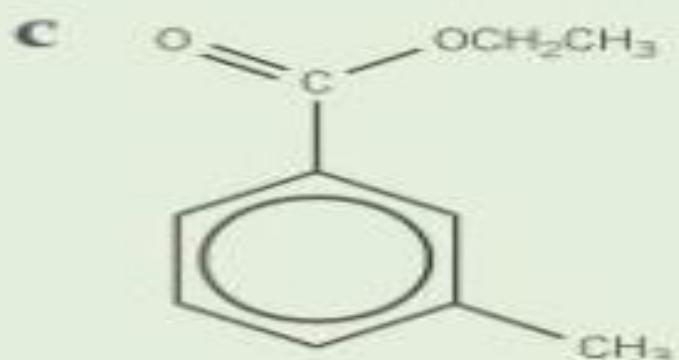
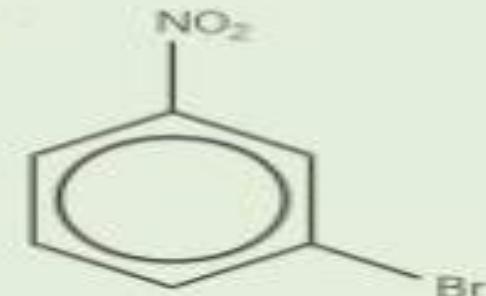
a $C_6H_5Br + HNO_3$ (1 mark)
b $C_6H_5NO_2 + Br_2 + FeBr_3$ (1 mark)
c $C_6H_5COOCH_2CH_3 + CH_3Cl + AlCl_3$ (1 mark)


3 Starting from benzene, suggest a two-step synthesis of:

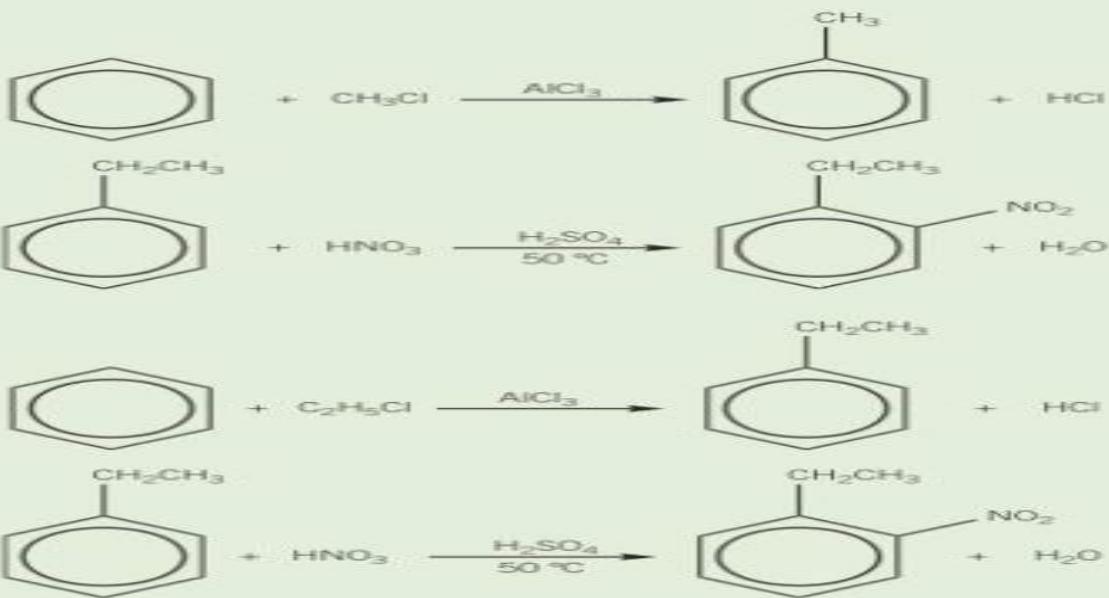
a 3-nitromethylbenzene (2 marks)
b 2-nitromethylbenzene. (2 marks)

2-and 4-directing (ortho-and-para directing)	3-directing (meta directing)
$-NH_2$ or $-NHR$	$RCOR$
$-OH$	$-COOR$
$-OR$	$-SO_3H$
$-R$ or $-C_6H_5$	$-CHO$
$-F, -Cl, -Br, -I$	$-COOH$
	$-CN$
	$-NO_2$
	$-NR_3^+$

1 **a** 2,4-directing **b** 2,4-directing
c 3-directing **d** 3-directing



2 **a**

and


b

3 a

b

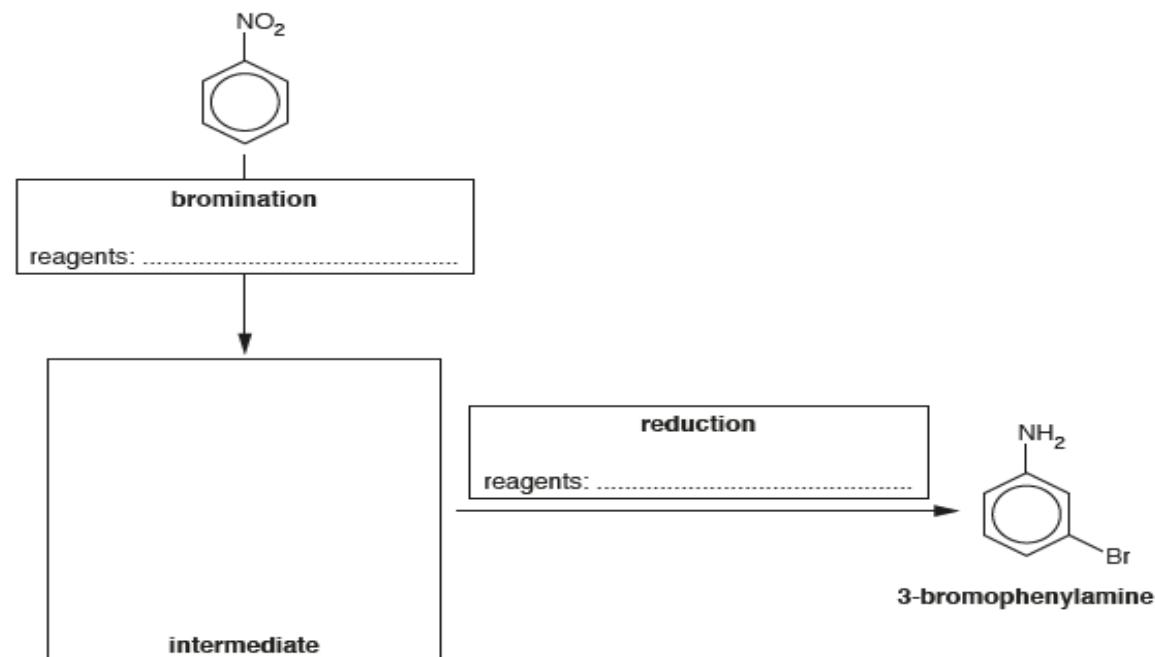
(b) A student investigates the relative ease of nitration of phenol, benzene, and benzoic acid.

The student finds that the conditions required for the nitration of each compound are different, as shown in Table 17.1.

Compound	phenol	benzene	benzoic acid
Conditions required for nitration	Dilute HNO_3 20 °C No catalyst	Concentrated HNO_3 55 °C H_2SO_4 catalyst	Concentrated HNO_3 100 °C H_2SO_4 catalyst

Table 17.1

(i) State the trend in the relative ease of nitration of phenol, benzene, and benzoic acid.


.....
.....
..... [1]

(ii) Apply your knowledge of the bonding in arenes to explain the trend in part (b)(i).

.....
.....
.....
.....
..... [3]

(c) A student synthesises 3-bromophenylamine, shown below, starting from nitrobenzene.

(i) Complete the flowchart showing the structure of the intermediate and the formulae of the reagents for each stage.

[3]

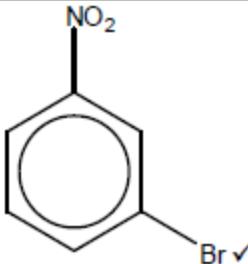
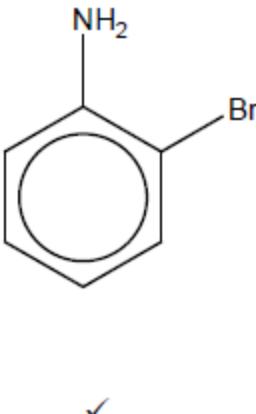
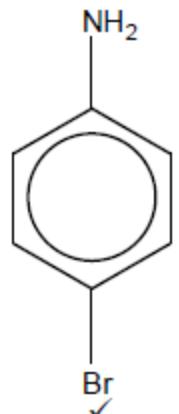
(ii) Another student attempts the same synthesis but carries out reduction before bromination. The student was surprised to find that two structural isomers of 3-bromophenylamine had been formed instead of the desired organic product.

Explain this result and suggest the structures of the two isomers that formed.

Explanation

.....

.....




Structures

.....

[3]

	(b)	(i)	<p>Phenol is the most easily nitrated/ most reactive AND Benzoic acid is the least easily nitrated/ least reactive ✓</p>	1	<p>Response must give rank order of reactivity e.g. nitration becomes more difficult from phenol (to benzene) to benzoic acid OR nitration becomes easier from right to left in the table</p>
		(ii)	<p>Reactivity of phenol a (lone) pair of electrons on O is (partially) delocalised/donated into the π-system / ring ✓</p>	3	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW the electron pair in the p orbitals of the O atom becomes part of the π-system / ring ALLOW diagram to show movement of lone pair into ring</p>

Question	Answer	Marks	Guidance
	<p>Reactivity of benzoic acid</p> <p>The –COOH group on benzoic acid is an electron withdrawing group ✓</p> <p>Links electron density in π-bond to reactivity</p> <p>In phenol electron density is higher AND The ring is more susceptible to attack</p> <p>OR</p> <p>In benzoic acid electron density is lower AND The ring is less susceptible to attack ✓</p>		<p>ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into π-system / ring</p> <p>IGNORE activating and deactivating.</p> <p>ALLOW the following alternatives for susceptibility to attack:</p> <ul style="list-style-type: none"> phenol attracts electrophiles / NO_2^+ more phenol polarises electrophiles / NO_2^+ more benzoic acid attracts electrophiles / NO_2^+ less benzoic acid polarises electrophiles / NO_2^+ less
(c) (i)	<p>Bromination: Br_2 AND $\text{AlBr}_3/\text{FeBr}_3/\text{Fe}$ ✓</p> <p>Intermediate</p>	3	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>ALLOW any suitable halogen carrier catalyst</p>

Question	Answer	Marks	Guidance
	<p>Reduction: Sn AND (concentrated) HCl ✓</p>		ALLOW Kekulé structure IGNORE names (question asks for formulae) IGNORE reaction conditions even if incorrect IGNORE 'dilute' for HCl IGNORE H ₂ IGNORE NaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HCl then NaOH' scores the mark
(ii)	<p>NH₂ is 2,4 directing ✓</p> <p>Products (1 mark for each):</p>	3	IGNORE references to electron donating/withdrawing groups ALLOW –NH ₂ activates the ring causing the new group to join at positions 2 and 4. ALLOW ortho and para directing for 2,4 directing IGNORE 6-directing ALLOW Kekulé structure IGNORE names
	<p>Total</p>	21	

7 When monosubstituted aromatic compounds undergo further substitution, the position at which the new substituent attaches to the ring is directed by the original substituent. Use the table below to answer the questions which follow:

Original substituent	Position to which new substituent is directed
$-\text{COOH}$	3
$-\text{CH}_3$ (or any alkyl group)	2, 4
$-\text{NO}_2$	3
$-\text{Cl}$	2, 4
$-\text{COCH}_3$	3

a (i) Draw the structure of the major monosubstituted product formed when phenylethanone, $\text{C}_6\text{H}_5\text{COCH}_3$, reacts with chlorine in the presence of AlCl_3 . (1 mark)

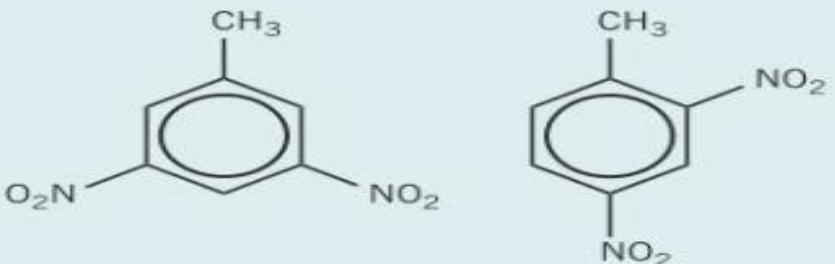
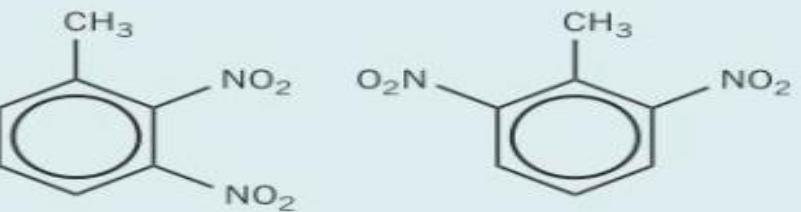
(ii) Show the mechanism for this reaction using curly arrows and illustrating the role of AlCl_3 in the reaction. (6 marks)

b Identify the two monosubstituted isomers formed when methylbenzene reacts with chloroethane in the presence of AlCl_3 . (2 marks)

8 Phenol is much more susceptible to electrophilic attack than benzene.

a Explain why phenol reacts more readily with benzene with electrophiles. (3 marks)

b Phenol reacts with dilute nitric acid to form a mixture of two monosubstituted isomers.



Draw the structures of these two isomers and write an equation for the formation of one of these isomers. (3 marks)

9 Methylbenzene, $C_6H_5CH_3$, is an aromatic hydrocarbon, used widely as a solvent. It is readily nitrated and can form mono-, di-, or tri-nitromethylbenzenes.

a 4-Nitromethylbenzene can be formed by the nitration of methylbenzene.

Outline the mechanism for the formation of 4-nitromethylbenzene from methylbenzene using NO_2^+ as the electrophile. (4 marks)

b There are six possible structural isomers of $CH_3C_6H_3(NO_2)_2$ that are dinitromethylbenzenes. Four of the isomers are shown below.

Draw the structures of the other two isomers. (2 marks)